首页> 外文OA文献 >Ricci flat metrics in various dimensions, depending from 2 light-cone parameters, and the Lagrangian for the 2 dimensional reduction of gravity
【2h】

Ricci flat metrics in various dimensions, depending from 2 light-cone parameters, and the Lagrangian for the 2 dimensional reduction of gravity

机译:利玛窦各种尺寸的扁平指标,取决于2个光锥   参数和拉格朗日的二维重力减少

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider d-dimensional Riemanian manifolds which admit d-2 commutingspace-like Killing vector fields, orthogonal to a surface, containing twoone-parametric families of light-like curves. The condition of the Ricci tensorto be zero gives Ernst equations for the metric. We write explicitly a familyof local solutions of this equations corresponding to arbitrary initial data ontwo characteristics in terms of a series. These metrics describe scattering of2 gravitational waves, and thus we expect they are very interesting. Ernstequations can be written as equations of motion for some 2D Lagrangian, whichgoverns fluctuations of the metric, constant in the Killing directions. ThisLagrangian looks essentially as a 2D chiral field model, and thus is possiblytreatable in the quantum case by standart methods. It is conceivable that itmay describe physics of some specially arranged scattering experiment, thusgiving an insight for 4D gravity, not treatable by standart quantum fieldtheory methods. The renormalization flow for our Lagrangian is different fromthe flow for the unitary chiral field model, the difference is essentially dueto the fact that here the field is taking values in a non-compact space ofsymmetric matrices. We investigate the model and derive the renormalized actionin one loop.
机译:我们考虑d维Riemanian流形,该流形允许d-2像通勤空间一样的Killing矢量场,正交于一个表面,包含两个像光曲线的单参数族。 Ricci tensorto的条件为零,给出了度量的Ernst方程。我们明确地写出了这个方程的一族局部解,它们对应于关于两个特征的任意初始数据的序列。这些度量描述了2个引力波的散射,因此我们希望它们非常有趣。 Ernstequations可以写为某些2D Lagrangian的运动方程,它控制度量的波动,该波动在Killing方向恒定。该拉格朗日本质上看起来像是二维手性场模型,因此在量子情况下可以通过常规方法进行处理。可以想象它可以描述某些特殊安排的散射实验的物理过程,从而为4D引力提供一个见识,而标准的量子场论方法无法对其进行处理。我们的拉格朗日算子的重归一化流不同于单一手性场模型的重归一化流,其差异主要是由于这样一个事实,即在这里,该场在对称矩阵的非紧凑空间中取值。我们研究该模型并在一个循环中得出重新归一化的动作。

著录项

  • 作者

    Zyskin, M.;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号